TDI Module Three

Database Management System Architectures

This module is the third of four modules that describe the use of the Trusted
Database Interpretation (TDI) of the Trusted Computer System Evaluation
Criteria (TCSEC) for database product evaluation and certification. The basic
terms and concepts presented in the TDI are summarized in TDI Module One.
TDI Module Two describes various security policies which can be supported by
a trusted database management system (DBMS). This module describes
various architectural approaches for building a trusted DBMS. TDI Module
Four describes other database security issues that are not covered by the TDI
but are important issues in database security, such as inference, aggregation,
and database integrity.

Module Learning Objectives

TDI Module One described approaches for evaluating a trusted DBMS while
Module Two described the policies and requirements that the DBMS must
enforce or meet. This module presents alternative architectures for a trusted
DBMS and describes how these approaches affect the evaluation process and
the DBMS’s enforcement of its security policy. Upon completion of this module
the student should:

1) be familiar with various architectural approaches for trusted DBMSs.

2) understand the pros and cons of each architectural approach with
respect to an evaluation against the TDI.

3) understand the reference validation mechanism requirements for
composed TCBs.

4) understand how security services can be distributed among the trusted
DBMS and any underlying TCB (e.g., an underlying operating system
(0S)).

Overview

A trusted DBMS must provide the same types of security services as a trusted
OS. The differences lie in the underlying objects that the DBMS is protecting
and the architectural alternatives that are available to DBMSs. Most of these
alternatives rely on an underlying OS to provide basic services to the DBMS.
Composed OS and DBMS TCBs must meet the same TCSEC requirements as
that of a single OS TCB. The composition of two TCBs, each enforcing specific
aspects of the overall security policy gives rise to various alternatives. The pros
and cons of several database architectures and implementation alternatives
are presented in the discussion below.

Architectural Approaches

There are a number of different approaches that can be taken to develop a
trusted DBMS. In this section the following important examples are

-1- April 1997



TDI Module Three

considered: monolithic, TCB subsets, trusted subject, client-server, and
integrity lock.

Monolithic

The monolithic architecture is a system that has a single TCB subset which
enforces the system security policy and is self sufficient with regard to its needs
and resources. It does not rely on other systems or TCBs to provide services it
requires to perform its functions. From an evaluation perspective a system is
considered monolithic when it is not feasible to divide its structure into
multiple TCB subsets which can be separately evaluated. Of course, even with
a monolithic approach, the internals of the system may be highly organized
into separate modules, and in fact such structure is required for high assurance
systems. This architecture is most likely to be used for a DBMS in the case
where the DBMS runs directly on hardware instead of a general purpose
operating system or in the case that the operating system (OS) and the DBMS
vendor are one in the same.

Non-Monolithic

Monolithic DBMSs can be evaluated directly against the TCSEC. The other
architectures discussed below all involve the composition of multiple TCB
subsets playing a role in enforcing the system policy. An overview of this
problem is given in [DTIN92]. The rest of this module assumes that the
architecture and concepts being discussed are in reference to composite TCBs
being evaluated using the TDI, except where specifically noted.

TCB Subsets Meeting the Conditions for Evaluation by Parts

The TDI defines TCB subsets and gives conditions required for evaluation of
TCB subsets (i.e., evaluation by parts). The most common use of TCB subsets
meeting the condition for evaluation by parts for DBMSs is a trusted DBMS
implemented on top of a trusted OS. For this architecture to be eligible for
evaluation by parts it must meet all the evaluation by parts requirements as
defined in the TDI. In this case, the DBMS TCB subset directly depends on the
OS TCB subset, and hence the DBMS TCB subset is less primitive than the OS
TCB subset.

Of particular note is the requirement that each TCB subset includes all its
trusted subjects. This means the OS TCB subset must include all its trusted
subjects. The DBMS TCB subset must be untrusted with respect to the policy
enforced by the OS TCB subset in order to meet the requirements for
evaluation by parts. If the OS enforces a standard Mandatory Access Control
(MAC) policy, the DBMS in this case cannot be trusted with respect to MAC.!
The DBMS can enforce a DAC policy beyond that enforced by the OS.

L The following discussion is predicated on the assumption that the DBMS is privileged with respect
to the MAC policy. It is also possible for the DBMS to be privileged with respect to the DAC policy, but
this is not common practice.

-92- April 1997



TDI Module Three

Moreover, the combined DBMS and OS TCB subsets can enforce a MAC policy
on DBMS objects such as tuples. However, this is done by storing tuples of
different levels in OS objects of the corresponding levels. This is necessary
since the DBMS is not trusted to violate the MAC policy enforced by the OS.
The DBMS must operate as an untrusted subject at a level corresponding to the
user’s current working level and constrained to read only objects at levels
dominated by the current level and write to objects at levels dominating the
current working level. The DBMS can open for reading files at levels strictly
dominated by the current working level and open files at the current level for
reading and writing. In this architecture the enforcement of the MAC policy
depends only on the correct operation of the OS TCB subset.

Among the other TCB subset conditions for evaluation by parts it is important
to note that the OS TCB subset must provide support for the Reference
Validation Mechanism arguments for the DBMS TCB subset. In particular, OS
mechanisms must be used to guarantee that the DBMS TCB subset software
and data cannot be tampered with by other processes running on the system,
and the data in the database cannot be accessed except through the DBMS
TCB subset. For example, the OS TCB subset file access control mechanism
must protect the DBMS application file and all database files from direct access
by user processes.

[JLUNBSS] gives more detail on this architecture. Oracle System 7 also exhibits
this type of architecture in one of its configurations. Oracle’s other
configuration exhibits the trusted subject architecture, which is described
below.

TCB Subsets Not Meeting the Conditions for Evaluation by Parts

The TCB subset constraints are explained in TDI Module One. TCB subsets not
meeting all the constraints are not candidates for evaluation by parts. These
conditions are analyzed for TCB subsets not meeting the conditions for
evaluation by parts in TC-6.4.1 of the TDI. Below is a discussion of the trusted
subject architecture which violates condition 3, “Trusted Subjects Included”.

Trusted Subject

Often a trusted DBMS is trusted with respect to the MAC policy enforcement
of the underlying OS TCB. As with the TCB subsets architecture described
above, the DBMS depends on the OS TCB subset and uses its functions.
However, this architecture does not meet all the requirements for evaluation
by parts because the OS TCB subset does not include all its trusted processes.
In this case the DBMS TCB subset is a trusted subject. The DBMS TCB subset
still uses many OS functions, uses OS objects to store data used by the DBMS
and the data for the database, and relies on OS TCB mechanisms to support
Reference Validation Mechanism properties for the DBMS TCB.

In this architecture, the DBMS TCB is trusted to violate the security policy

(e.g., MAC) constraints on reading and writing. The DBMS TCB subset is
responsible for enforcement of a MAC policy on the objects it controls. For

-3- April 1997



TDI Module Three

example, the DBMS may enforce a MAC policy on database tuples while
storing all tuples in a single OS object but only allowing users to access tuples
for which their current working level entitles them. The OS object used for
storing the data must be protected from direct access by untrusted subjects,
perhaps using an object at a level not available for user logons. In order to
extract appropriate tuples from this object and make them available to users,
the DBMS uses its ability to violate the OS MAC policy to write down to users
in order to give them access to the data.

Since this architecture does not meet all requirements for evaluation by parts
it is not possible to have the evaluation of the OS and DBMS proceed with the
same degree of independence which is possible with TCB subsets which do
meet the conditions for evaluation by parts. However, it should still be possible
to reuse much of the evidence generated during the original evaluation of the
OS TCB subset. The exact amount of the OS evaluation evidence which can be
reused will depend on the particular DBMS implementation.

The Informix trusted DBMS product is an example of this type of architecture.

Other Architectures

Below is a discussion of several other DBMS architectures which do not fall
cleanly into the sections above. Client-Server architecture may or may not be
a candidate for evaluation by parts, depending upon the implementation. The
Integrity Lock architecture, as well as its design flaw, is discussed here as an
example of an architecture which will not be evaluated by NSA.

Client-Server

In a client-server architecture the DBMS is divided into clients which:

interface with users and application programs, receive queries from users
and applications, return results of queries to users and applications;

and servers which:

store data, process queries transmitted by clients, and return results of
queries to clients.

With respect to security enforcement, the client-server architecture can be
implemented in several different ways. Since the client and server must
communicate, the client and server or portions of them will have to cooperate
as peers to transmit data at different security levels and security data such as
labels. In this respect, the analysis of these portions of the client and server can
proceed based on the TNI.

A server in a client-server architecture can be implemented as an untrusted
server. In an MLS environment, an untrusted server would have to be
implemented as replicated server processes because a single untrusted server
process would not have the privilege to transmit and receive information of
different sensitivity levels. To handle multiple sensitivity levels the server

-4- April 1997



TDI Module Three

would have to be replicated one per sensitivity level. An architecture could go
even further and replicate the server once per active user.

A trusted server is normally implemented as one or more processes that have
the privilege to violate the system security policy and are trusted to enforce
those aspects of the security policy that are within its domain. If a trusted
server runs on top of a separately evaluated operating system, it may be
considered as an instance of TCB subsets meeting the conditions for evaluation
by parts or a trusted subject architecture depending on whether the server is
trusted with respect to the policy enforced by the operating system. It is also
possible that a trusted server could be implemented as a monolithic
architecture.

Clients can be implemented in trusted or untrusted versions in the same
manner as servers can. Both trusted and untrusted architectures are equally
likely for clients, much more so than the likelyhood of an untrusted server.

The Sybase product is an example of the client-server architecture with a
Trusted Subject server TCB which can support trusted or untrusted clients.

Integrity Lock

The Integrity Lock approach is one of the earliest and simplest approaches
devised for trusted databases. However, because of inherent design flaws, this
approach is not very popular today, and NSA will not evaluate a trusted
database that has been developed using the integrity lock approach. It is
included here for historical interest only.

The integrity lock approach was first devised as a method to build a trusted
DBMS out of a commercial DBMS without requiring extensive modifications to
the DBMS. In fact, the premise was that no modifications to the commercial
DBMS would be required. Integrity Lock works as follows:

All tuples (or elements, depending on the label granularity) are labeled with a
sensitivity label indicating its sensitivity. All tuples are ‘locked’ with a
cryptographic seal by an integrity lock mechanism before being sent to the
DBMS for storage in the database. This cryptographic seal is computed over all
the data stored in the tuple (or element), including its label. The seal is then
stored with the data in the database. Thus, all data stored in the database is
sealed with its sensitivity label. When queries are presented to the DBMS, it
processes the query and returns the result. All results are filtered by the
integrity lock mechanism to ensure that the user only receives data that is
marked at the user’s session level or below AND the mechanism ensures that
the seals and/or data have not been tampered with deliberately or accidentally
by the DBMS. This check for tampering is done by recomputing the
cryptographic seal and comparing the recomputed seal with the value returned
with the data and label. If the seals differ, the data is not returned to the user
and appropriate actions are taken to notify security personnel that the data
has been tampered with. Since only the integrity lock mechanism has the key

-5- April 1997



TDI Module Three

used to compute the cryptoseal, untrusted processes in the DBMS cannot alter
the data or label and recompute the correct seal.

As one can see, all trust for this approach is placed in the integrity lock
mechanism, not the DBMS. This mechanism is normally much smaller and
simpler than the DBMS, making it much easier to gain assurance that the
mechanism works. This minimization of the amount of work required to
develop a ‘trusted’ database plus the ability to adapt an integrity lock
mechanism to several DBMSs is what made this approach attractive.

However, this approach has a significant design flaw which prevents this
architecture from meeting the security policy requirements of the TCSEC at
any level that requires Mandatory Access Control (e.g., B1, B2, B3, & Al). Vast
amounts of sensitive information can be signaled past an integrity lock
mechanism. While the integrity lock mechanism ensures each record is
appropriately labeled, sensitive information may be encoded by the commercial
DBMS or its applications using techniques like varying the ordering of released
records or alternating long and short records, etc. This covert channel can
easily attain high bandwidths using sophisticated methods and cannot be
stopped by the integrity lock mechanism. Even if one is not concerned about
malicious software in the DBMS utilizing this signaling channel, the integrity
lock mechanism must be implemented at a level so that the back end portion
of the DBMS only returns atomic storage units (e.g., tuples or elements) to the
integrity lock mechanism. If tuples which are returned to the integrity lock
mechanism are based on comparisons or other DBMS operations, tuples
returned at a low sensitivity level could easily reveal information about more
sensitive tuples.

Reference Validation Mechanism Arguments

The fundamental concept of reference monitor and its implementation as a
reference validation mechanism was presented in TCSEC Module Six. TDI
Module One introduces the extension of this implementation to TCB subsets.
Below is a discussion of the RVM arguments for both composed and stand alone
TCBs.

Reference Validation Mechanisms in composed TCBs

For the purposes of this discussion, we will assume that a composed TCB is
made up of a DBMS TCB and an underlying OS TCB. However, these
arguments still hold for other composed TCBs which are formed from separate
components.

The reference validation mechanism requirements of isolation, remaining non-
by passable/always invoked, and verifiable must be provided by the composed
OS/DBMS TCB as a whole. To meet these requirements, a trusted DBMS must
be complete and verifiable in its own right (as required by the TCSEC) and
must rely on the underlying OS to isolate it and its data from user processes.
The underlying OS TCB must protect the DBMS, its data, and the running
DBMS process from tampering and prevent all access to the database except
through the DBMS TCB. The DBMS TCB itself must then validate all accesses

-6- April 1997



TDI Module Three

to the objects it protects. Depending on the architecture, this validation may or
may not rely on security mechanisms provided by the underlying OS TCB (such
as MAC).

There are various ways an underlying OS TCB can protect a DBMS it supports,
including any DBMS user data and program data it stores or uses to process
queries. Typically, the DBMS T'CB runs as a process in application space. This
process is protected from users by the standard process isolation mechanism
used to isolate all processes from one another. The DBMS program file and any
DBMS applications and data are usually stored as files in the underlying OS
file system or in raw disk space. The static portions of this (i.e., the execution
file, canned queries, fixed tables) can be protected from illegal modification in
a number of ways. Static data can be:

1) stored at a level below any normal user to prevent the static data from
being modified by an untrusted process. The MAC policy of ‘no write
down’ provides a mnatural method for preventing unauthorized
modification while providing read access to all users. This works well for
the DBMS application file and any other static data, which should never
be modified, but must be capable of being read by all users.

2) marked at a special DBMS (mandatory) category such that only the
trusted DBMS process possesses the category. This prevents all normal
users from reading the application and any other DBMS files. However,
this means that the DBMS TCB process must be invoked with this
category (so it can read the DBMS files). Because the DBMS TCB is
executing with its special category, any communication between the
DBMS and user processes must be considered a write-down (since the
special DBMS category will have to be dropped during the
communications between the DBMS and the user). This write-down
capability requires a special OS privilege which violates one of the
conditions for evaluation by parts.2 Hence, the DBMS must be considered
a trusted process, not a separate TCB subset.

3) associated with a special discretionary identity or group. Access to that
identity or group is possessed only by the trusted DBMS. However, the
known weaknesses of DAC [TCSEC Module Nine - DAC] make this
alternative very risky. If the DBMS TCB is trusted to enforce MAC, then
this alternative would not be allowed because the labels stored with the
data would be insufficiently protected from tampering by users. If the
DBMS TCB was not trusted with respect to the underlying OSs MAC
policy, then this approach might be acceptable.

Modifiable DBMS data can be protected using methods Two and Three. These
methods will not only protect the data from illegal modification, they will also
protect the data from illegal reads as well, such as attempts to access the data
directly through OS file system commands. These methods will force all access

2-See pp. 14-15 of The Trusted Databased Interpretation.

-7- April 1997



TDI Module Three

attempts to go through the DBMS TCB. Method One should not be used
because the DBMS TCB would have to do a write down for each modification
and the data would not be protected from attempts to read the data directly.

Reference Validation Mechanism in stand alone (monolithic) TCBs

A DBMS can be implemented in a front or back-end server without an
underlying OS. This approach makes the DBMS a stand alone (i.e., monolithic)
TCB. However, the DBMS must still communicate with users who reside on
clients of the DBMS. These clients are typically hosts with operating systems
that are connected to the DBMS server through a direct communications
channel or a network.

The need to protect the trusted DBMS and its data from untrusted processes
may be simplified when the DBMS is running in an environment that does not
directly support users. A DBMS server supports its clients by receiving
requests from its clients (another host), processing the request, and then
returning the results. The users are not directly running on the server
machine. However, it is still the case that the DBMS TCB must meet all RVM
requirements. Demonstration of RVM requirements in this case is done in
accordance with standard TCSEC criteria.

The introduction of a communications channel between the client and the
server raises other issues that must be addressed. If the client/server
communicate across a network then network security issues such as
identification, authentication, data integrity, label integrity and label
interpretation issues must be addressed. These issues are described in TNI
Modules One through Four, which describe the development and evaluation of
trusted networking products.

Distribution of Services

An important aspect of the development of a composed TCB is determining how
the services provided by the composed TCB are to be distributed among the
TCB subsets that make up the whole. Some services which must be provided
by the composed TCB may be performed by one TCB subset with the service
made available to other TCB Subsets. An example is Identification and
Authentication (I&A) where one TCB subset (i.e., the OS) identifies and
authenticates each user and then passes the authenticated identity and other
information such as user session level on to other TCB subsets on request.
Other services may be performed jointly by several parts of the TCB. A typical
example is auditing where each TCB subset generates its own audit data. This
data may or may not be stored in a central repository for later review. In every
case it is essential that the services provide all TCBs with consistent and
accurate information about security critical items such as the current working
level and the user associated with subjects. The following describes possible
distribution of services between a DBMS TCB and an underlying OS TCB.

-8- April 1997



TDI Module Three

MAC

For mandatory access control, the main architectural issue is whether or not to
rely on the underlying OS to provide MAC. The following presents some of the
pros (+) and cons (-) associated with reliance on OS MAC:

=+

High assurance is easier to achieve since the underlying OS TCB does not
have to be altered and MAC does not have to be provided by the DBMS TCB.
This makes the evaluation more straightforward and less trusted code is
required within the DBMS.

Can propose a TCB Subset argument and then avoid reexamining the
underlying trusted OS. The trusted subject approach may still be required
if any MAC privileges are needed by the DBMS TCB. Unfortunately, MAC
privileges are frequently required to perform certain trusted operations
such as downgrading, reclassification, database maintenance, etc.

May be lower performance because there must be at least one file per
security level. Performance degradation is somewhat dependent on the size,
and security mix of the data in the database. A large number of levels and
categories will tend to slow down this approach. A large amount of data
with few combinations of levels and categories will tend to be affected much
less.

To wunderstand the efficiency concerns, one must understand the
relationships that normally exist between DBMS objects (i.e., tables, tuples,
elements) and the underlying OS objects (files, disk space). A trusted OS
will provide MAC at the file or raw disk space level, one label per object. A
trusted DBMS will normally ‘provide’ MAC at the tuple or element level.
However, the DBMS stores these tuples or elements in underlying OS
objects. Since labels are only provided one per file, then there must be at
least one OS file for each sensitivity of data in the database. If the tuples or
elements in a table have many different sensitivities, then they must be
stored in many separate files in order to allows the OS to label them
correctly. This can severely impact the performance of the DBMS when it is
manipulating large amounts of data of different sensitivities.

The other alternative is to provide MAC in the DBMS and rely on the
underlying OS for primitive file services only. This is a trusted subject
approach since MAC is enforced by the DBMS TCB.

It requires appropriate assurance for MAC separation by the trusted DBMS
and may require reevaluating aspects of the underlying OS.

It may be more efficient since data of different sensitivities can be mixed
within a single OS file. Efficiency again depends on the mix of data.

This approach also makes it much easier for the DBMS to provide trusted

administration functions across levels since the DBMS itself is trusted to
enforce the MAC policy.

-9.- April 1997



TDI Module Three

DAC

DAC is usually provided by the DBMS TCB in order to provide DAC at the
tuple, table, and database level, which are abstractions built using underlying
OS objects. DAC is also typically provided on views, which are ways of looking
at and combining data stored in the base relations. The variety of DAC access
modes (select, insert, update, delete, etc.) also makes it difficult to rely on any
underlying file level DAC. DAC is almost always provided by the DBMS TCB
because of the granularity, overlap and variety of DAC that must be provided
by a trusted DBMS.

A ramification of this is that as long as the DBMS TCB enforces any aspect of
the security policy, including DAC, it must be trusted. However, a DBMS TCB
can be considered a TCB Subset if the policy it enforces is built on top of the
policy enforced by the underlying OS. It is considered a trusted subject if it is
granted any privileges which would allow it to violate the policy enforced by the
underlying OS. Please refer to TDI Module One and section TC-4 of the TDI for
more information on TCB Subsets, Evaluation by Parts, and Trusted Subjects.

I&A

The TDI says that Identification and Authentication of users can be provided
by either the underlying OS or the DBMS. Relying on the underlying OS is
more convenient for the user since I&A is only required once. To accomplish
this a trusted path must be in place between the TCB’s so they can share I&A
and clearance data (i.e., the DBMS must be able to establish a trusted path to
the more primitive OS TCB to obtain true I&A data).

A DBMS TCB can also rely on its own I&A mechanism, or use an 1&A
subsystem. However, this approach has a number of drawbacks. It is less
convenient for the user since I&A is required more than once. There are also
potential consistency problems between the two I1&A databases. How does the
DBMS ensure that the information in its I&A database matches what is in the
underlying OS database, particularly with regard to user clearance
information? If the DBMS relies on the underlying OS for clearance
information then this must be sent to the DBMS. It is also difficult for the
DBMS to ensure that the person logging in to the DBMS is the same person
that logged on to the OS (i.e., one could login to the OS as user A and then login
to the DBMS as User B and the DBMS would not know the difference).

Audit

The underlying OS will generate an audit trail for the objects it protects.
However, the DBMS TCB must still generate its own audit records because the
granularity of the underlying OS audit trail is insufficient (i.e., only at the file
level). It is also possible, depending on the DBMS architecture chosen, for the
identity of user actions to be masked by the DBMS application itself (i.e.,
DBMS performs actions on user’s behalf, OS audit indicates DBMS did
something, not the user). Thus, the DBMS must generate audit records that
indicate on whose behalf each action was performed, and the success or failure
of these actions. This raises the issue of how to combine or otherwise deal with

10 - April 1997



TDI Module Three

multiple audit trails. A mechanism must be in place that provides this
capability.

Required Operating System Services

An important factor for a DBMS vendor who is building a trusted DBMS on top
of a trusted OS is the security services that the trusted OS provides. In order
for the two TCBs to cooperate in a trusted fashion, the trusted OS must provide
certain capabilities which the DBMS TCB can use to exchange and verify
security information with the OS TCB. The specific services that the DBMS
TCB requires depends on the DBMS architecture and what underlying OS
security mechanisms, such as MAC or I&A, the DBMS relies on.

If the DBMS relies on the OS to do 1&A, then the OS must be able to export
I&A information about a user to the DBMS TCB in a trusted fashion. This I&A
information needs to include the user’s authenticated identity, current session
level, clearance, and any OS privileges that the user may possess. If the DBMS
does its own I&A, then it must still be able to share I&A information with the
OS to ensure that the two 1&A databases are consistent. This is especially
important to ensure that identities stored in audit trails can be mapped from
their DBMS identity to their OS identity.

If MAC is provided by the DBMS, then mechanisms must be in place to share
label information between the TCBs to ensure that the meaning of the DBMS
labels has a correct mapping to the OS labels. To shield the DBMS from the
details of the OS labeling scheme, the OS should also provide the capability to
perform compare functions on labels. Label comparison functions such as
Greater Than, Greater Than or Equal, Less Than, Less Than or Equal, Equal,
Not Equal, as well as the ability to translate labels to their human readable
counterparts and vice versa. Other useful functions to provide would be a
Greatest Lower Bound or Least Upper Bound function.

Regardless of the architecture and capabilities, it is also important for the OS
to be able to communicate in a trusted manner the sensitivities of all the
objects it protects and the user sessions currently executing. This allows the
DBMS to store its data in appropriately marked objects and to understand the
current session levels of the users it is supporting. Other capabilities may be
desirable.

The point being made here is that in order for two TCBs to cooperate in a
trusted manner, specific capabilities must be provided by both TCBs to allow
them to communicate security information in a trusted manner. This is
especially critical when a DBMS TCB is to be built on top of a previously
evaluated OS TCB. If the OS TCB does not provide the necessary capabilities,
then it may have to be modified to provide these capabilities. Any modifications
will require that some or all of the OS TCB be reevaluated, which can entail
considerable time and expense.

11 - April 1997



TDI Module Three

Required Readings

The required readings are supplied as part of the source material for the
module. These readings, and the module overview, provide all the material
covered by the module test questions.

DTNI91 National Computer Security Center, Trusted DBMS Interpretation of the
Trusted Computer System Evaluation Criteria (TDI), NCSC-TG-021,
Version-1, April 1991.

Part One (except for section TC-5) and parts 1 - 7 of Appendix B describe
various issues and alternatives surrounding Trusted DBMS architectures
and their approaches and how the selected architecture will effect an
evaluation against the TDI.

TLUN92 Research Directions in Database Security, Teresa Lunt, Editor, Springer
Verlag, 1992. [Chapters 2 and 6]

Chapter 2 discusses the SeaView MLS DBMS research project being done
at SRI. SeaView uses a TCB Subset architecture to build an MLS DBMS on
top of an MLS Operating System (GEMSOS) using the underlying OS to
enforce the MAC policy. Particular attention should be spent on section 2.7
which describes the architectural approach.

Chapter 6 describes the approach and architecture for both versions of the
Sybase Secure SQL Server. The B1 version runs on a B1 UNIX platform
while the B2 version runs on bare hardware, both offering the same user
and application interface.

Other Related Readings

JHIN86 Thomas Hinke, “Secure Database Management System Architectural
Analysis”, Proceedings of the National Computer Security Center
Invitational Workshop on Database Security, June 1986.

JHEN86 Ronda Henning and Swen Walker, “Computer Architectures and Database
Security”, Proceedings of the National Computer Security Center
Invitational Workshop on Database Security, June 1986.

JVAR91 Rammohan Varadarajan, “An Qverview of INFORMIX Online/Secure”,
14th National Computer Security Conference, October 1991.

JGARSB6 Cristi Garvey, “Architectural Issues in Secure Database Management
Systems”, Proceedings of the National Computer Security Center
Invitational Workshop on Database Security, June 1986.

JHIN89 T. H. Hinke, “DBMS Trusted Computing Base Taxonomy”, 3rd IFIP
Workshop on Database Security, September 1989.

212 April 1997



TLUN92

DTIN92

JBURB86

JGRA84

JGRAS85

JGRAS89

JKINO87

JLUNSS

JNOTS86

JROUS7

JTRO86

TDI Module Three

Research Directions in Database Security, Teresa Lunt, Editor, Springer
Verlag, 1992. [Chapter 4]

National Computer Security Center, The Design and Evaluation of
INFOSEC Systems: The Computer Security Contribution to the Composition
Discussion, Mario Tinto, C Technical Report 32-92, June 1992.

R. K. Burns, “Towards Practical MLS Database Management Systems
Using the Integrity Lock Technology”, 9th National Computer Security
Conference, 1986.

R. D. Graubart, “The Integrity-Lock Approach to Secure Database
Management”, 1984 IEEE Symposium on Security and Privacy, 1984.

R. D. Graubart, K. J. Dufty, “Design Overview of Retrofitting Integrity-Lock
Architecture onto a Commercial DBMS”, 1985 IEEE Symposium on
Security and Privacy, 1985.

R. D. Graubart, “A Comparison of Three Secure DBMS Architectures”, 3rd
IFIP Workshop on Database Security, September 1989.

R. Knode, “TRUDATA: The Road to a Trusted DBMS”, 10th National
Computer Security Conference, 1987.

T. F. Lunt, et al, “Final Report Vol. 1: Security Policy and Policy
Interpretation for a Class Al Multilevel Secure Relational Database

System”, Computer Science Laboratory, SRI International, Menlo Park,
California, 1988.

L. Notargiacomo and J. P. O’Connor, “Report on Secure Distributed Data
Management System Research”, Proceedings of the National Computer
Security Center Invitational Workshop on Database Security, June 1986.

P. A. Rougeau, E. D. Sturms, “Sybase Secure Dataserver: A Solution to the
Multilevel Secure DBMS Problem”, 10th National Computer Security
Conference, September 1987.

P. J. Troxell, “Trusted Database Design”, 9th National Computer Security
Conference, 1986.

13- April 1997



